Biorefinery strategies
based on Room Temperature Ionic Liquids, hydrolases and their synergism with other pretreatments

Eric Husson and Catherine Sarazin

Génie Enzymatique et Cellulaire
UMR 7025 CNRS - Université de Picardie Jules Verne
33 rue Saint-Leu, 80039 Amiens Cedex, France

e-mail: eric.husson@u-picardie.fr; catherine.sarazin@u-picardie.fr
BIOREFINERY CONCEPT

Toward the valorization of the whole plant

Hemicellulose (20 - 30 %)
Lignin (15 - 30 %)
Cellulose (30 - 45 %)
Others (5 %)

Proteins, lipids, polyphenols, etc.

Glucose/cellobiose as PLATFORM MOLECULES or FERMENTABLES SUGARS

Synthesis of sugar esters from C₅ mono/oligomers: SURFACTANTS

Synthesis of ester derivatives of lignins: partially biosourced COMPOSITES

Lignocellulose constituents: some examples of application

Innovative and ecological strategies for valorization

https://www.valbran.eu/fr/
Poster no 22
Hemicellulose

Cellulose

Lignin

Simplified view of recalcitrant LCB

PRETREATMENT : THE KEY TO UNLOCKING

Disorganization, compositional or structural changes?

- **Example no 1**
 - Single disorganization

- **Example no 2**
 - Disorganization + fractionation
 - *Ex: delignification*

- **Example no 3**
 - Disorganization + fractionation + structural changes of biopolymers
 - *Ex: delignification*

ROOM TEMPERATURE IONIC LIQUIDS (RTILs)

Organic salt: organic cation and organic or inorganic anion

Interesting properties: non-volatile solvent, low melting point, low toxicity, capacity to solubilize various biomolecules, recycling, etc.

Solubilization of biopolymers

Eco-friendly properties

Corrosive effect

Biocompatibility

Hydrophilic\(^a\)

Imidazolium-based\(^b\)

(alkyl chain length < 4C)

No\(^c\)

Yes\(^d\)

Cellulases / Xylanases / S. cerevisiae / K. marxianus

1-ethyl-3-methylimidazolium acetate

\([\text{C2mim}][\text{OAc}]\)

1-ethyl-3-methylimidazolium methylphosphonate

\([\text{C2mim}][\text{MeO(H)PO}_2]\)

Lignocellulosic biomass

Incubation in RTIL
Temperature – duration

Regeneration step by adding water

Filtration and washing

Solid fraction

Enzymatic hydrolysis

Sugar monomers/oligomers-rich liquid fraction

RTIL-water mixture*

Water evaporation

Recovered RTIL*

Lignin extraction (patent protection)

*Containing lignin and others compounds
FLOWCHART

Schematic of the overall sequential process

Lignocellulosic biomass

Incubation in RTIL
Temperature – duration

Regeneration step by adding water

Filtration and washing

Solid fraction

Enzymatic hydrolysis

Sugar monomers/oligomers-rich liquid fraction

RTIL-water mixture*

Water evaporation

Recovered RTIL*

Lignin extraction (patent protection)

*Containing lignin and others compounds

Mild conditions

110 °C
40 min
Schematic of the overall sequential process

1. **Lignocellulosic biomass**
 - Incubation in RTIL (Temperature – duration)
 - Regeneration step by adding water
 - Filtration and washing

2. **Solid fraction**
 - Enzymatic hydrolysis
 - Sugar monomers/oligomers-rich liquid fraction

3. **RTIL-water mixture**
 - Water evaporation
 - Recovered RTIL*

4. **Lignin extraction** (patent protection)

*Containing lignin and others compounds

Mild conditions

110 °C 40 min

Characteristics

- Structural properties (ssNMR, FTIR, XRD)
- Morphological & textural properties (ESEM)
- Chemical composition (Van Soest method, NREL, etc)
- Characterization, separation and/or quantification (HPAEC-PAD or UV)
APPLICATION TO LIGNOCELLULOSIC BIOMASSES

Agricultural residues

- Wheat straw
- Rape straw (pellets)
- Sunflower seed shells
- Wheat bran

Forest residues

- Spruce sawdust (Softwood)
- Oak sawdust (Hardwood)

Dedicated crops

- Miscanthus

Large representative panel of lignocellulosic biomasses
PRODUCTION OF GLUCOSE

Toward fermentable sugars or platform molecules

Significative improvement of enzymatic saccharification [C2mim][OAc] as promising RTIL for efficient pretreatment

Glucose yield (g / 100 g of dry matter)*

*Yield relative to cellulose content (%)
[C2mim][OAc] RECYCLING AND LIGNIN ACCUMULATION

Toward fermentable sugars or platform molecules

Focus on Spruce sawdust

Recycling and reuse at least until 7 times without loss of performances in spite of significative accumulation of lignin in the RTIL

*Obtained with new RTIL

Impact of RTIL-pretreatment: fractioning or disorganization?

Chemical Composition of Solid Fraction

Specific interest of RTIL to apply soft pretreatment on biomass in minimizing fractioning and depolymerization of polysaccharidic fractions

IMPACT ON STRUCTURAL PROPERTIES OF BIOPOLYMERS

What is happening about changes?

- XRD
- FTIR
- ssNMR

Cristallinity index (%)

Glucose yield (g / 100 g of dry matter)

- Spruce sawdust
- Oak sawdust
- Rape straw
- Miscanthus
- Wheat straw
- Sunflower seed shells
IMPACT ON STRUCTURAL PROPERTIES OF BIOPOLYMERS

What is happening about changes?

XRD

FTIR

ssNMR

![Graph showing crystallinity index and glucose yield](image)

- **Spruce sawdust**
- **Oak sawdust**
- **Rape straw**
- **Miscanthus**
- **Wheat straw**
- **Sunflower seed shells**

Cristallinity index (%)

Glucose yield (g / 100 g of dry matter)
IMPACT ON STRUCTURAL PROPERTIES OF BIOPOLYMERS

What is happening about changes?

Digestibility of cellulosic fraction not exclusively related to Crl depending on biomasses RTIL pretreatment: toward the preservation of each polymer

IMPACT ON TEXTURAL PROPERTIES OF SOLID FRACTION

SEM analyses for a better understanding

Focus on Miscanthus

A complex organization: highly fibrillar morphology of strongly agglomerated sub-micrometric particles

Disorganization resulting in an expanded material with irregular and more porous texture

RTIL pretreatment for a drastic disorganization of lignocellulosic matrix: toward a better accessibility for enzymes

RTIL, Xylanases and Cellulases

Production of C₆ & C₅ sugar monomers

- Wheat straw
 - [C₂mim][OAc] pretreatment (110 °C – 40 min)
 - Solid fraction no1
 - Xylanase⁹-catalyzed hydrolysis
 - Xylose-rich liquid fraction
 - $\gamma_{\text{xylose}} \sim 98\%$
 - Solid fraction no2
 - Cellulaseᵇ-catalyzed hydrolysis
 - Glucose-rich liquid fraction
 - $\gamma_{\text{glucose}} \sim 98\%$
 - RTIL recycling
 - Xylanases

Complementarity of [C₂mim][OAc] xylanase and cellulase for total depolymerisation of carbohydrate polymers

⁹Endo-xylanases from *Thermobacillus xylanilyticus* (UMR FARE)
ᵇCellulases from *Trichoderma reesei* (commercial)
RTIL, Xylanases and Cellulases in One Pot

Production of C₆ & C₅ sugar monomers

Wheat straw (2% w/v)

- Incubation in RTIL 110 °C – 40 min
- Adding aqueous buffer
- Xylanase & Cellulase
- Xylose and Glucose-rich liquid fraction

Simultaneous process

A compromise: beneficial effects of H-bond network disruption of LCB versus detrimental effect of hydrolases denaturation

RTIL concentration in hydrolysis medium (% v/v)

Glucose or solubilized xylans yields (%)
RTIL & SUBCRITICAL WATER COMBINATION

Application to lignocellulosic wastes from oleaginous crops

Sunflowers seed shells or rape straw (from 2% to 10% w/v)

Sunflower seeds and rape straw were pretreated in a reactor with RTIL [C2mim][OAc] or [C2mim][MeOHPO2] under conditions of 200°C and 120 min, with a pressure range of 5-10 bars. The reactor volume was 560 mL.

Solid fraction no1

Cellulase-catalyzed hydrolysis

Glucose-rich liquid fraction

Y_{glc} = 78% vs 67% (single RTIL)

Liquid fraction no1

Water evaporation

Recovered RTIL

Lignin extraction (patent protection)

C_{5} sugars from hemicellulosic fraction

CONCLUSIONS - PERSPECTIVES

Versatility toward the varieties of lignocellulosic biomasses

Optimization: Factorial experimental design

POSTER no 23

C$_6$ / C$_5$ sugars from cellulosic and hemicellulosic fractions

Enzymatic processing or co-fermentation

Enriched-lignin fraction for further valorization

Biofuel, Bioproducts and Biomaterials
ACKNOWLEDGEMENT

Catherine Sarazin (PR. & Head lab)
Isabelle Gosselin (Lecturer)
Monica Araya-Farias (Post-doc)
Virginie Lambertyn (Technician)
Ranim Alayoubi (PhD student)
Caroline Rémond (PR)
Harivoni Rakotoarivonina (Lecturer)

Domnique Larcher (PR)
Jean-Pierre Bonnet (Lecturer)

Tatjana Stevanovic (PR)

Hélène Ducatel (Scientific resp.)
Pierre FERCHAUD (Project manager)

Loic Dupont (PR)
Arash Jamali (Research engineer)
Romain Roulard (Post-doc)
Dominique Cailleu (Research engineer)

Albert Nguyen Van Nhien (PR)
Caroline Hadad (Lecturer)
Sylvain Laclef (Research engineer)
Gael Huet (PhD student)

Eugène Vorobiev (PR)
Nabil Grimi (Lecturer)
Nadia Boussetta (Lecturer)
Olivier Bals (Lecturer)

Industrial samples from
Funding
THANK YOU FOR YOUR ATTENTION