Demography at different scales in the widespread tropical species Symphonia globulifera (Clusiaceae)

Paloma Torroba-Balmori, Thomas L. Parchman, Katharina B. Budde, Katrin Heer, Santiago C. González-Martínez, Caroline Scotti-Saintagne, Christopher W. Dick, Myriam Heuertz
Introduction

Non-random distribution of genotypes: spatial genetic structure (SGS)

Demographic processes and divergence in populations

Main drivers:
- Local genetic drift
- Gene dispersal abilities
- Local selective processes
- Barriers to gene flow
- Distance
- Adaptation

Fine-scale SGS within populations

Wide-range SGS among populations
The species *Symphonia globulifera* (Clusiaceae)

- Widespread late-successional rainforest tree → Afro- and Neotropics
- “Living fossil”: pollen fossils of 45 Ma in the Niger delta, fossils of at least 15-18 Ma in Mesoamerica, 15 Ma in South America
- High ecological amplitude: rainfall of 650–2100 mm, 0 - 2600 m a.s.l.
- Hermaphroditic, fleshy drupes → animal pollination and seed dispersal
- Different morphotypes in several regions
The within-population SGS

Markers:
- 6 Nuclear SSR: SG03, SG10, SG18, SG19, SGC4, SG06
- Plastid DNA-Sequences (cpDNA intergenic spacer: psbA-trnH)
Hypothesis

1. **Is within-population SGS significant?**

 - **Drift-dispersal equilibrium?** (genetic similarity decreases with distance, IBD theory)

 ![basic expected pattern](image)

 - **mutual influence**

2. **Are there any similarities in the strength and patterns of SGS in groups of populations due to common drivers?**

 - **Within-population spatial discontinuities in allele frequencies?**

 ![different gene pools](image)

 - **assortative mating**
 - **Topographic features**
 - **secondary contact**
 - **isolation by environment**
 - **behaviour of dispersers**
SGS assessment

- **Markers:**
 - SGS maternally inherited >> SGS biparentally inherited

- **Continents:**
 - Higher SGS in Africa: gene flow is more restricted
 - Weaker SGS in America

Sp statistic quantifies the SGS strength (Vekemans & Hardy 2004)

- America SSR Sp = 0.0116***
- Africa SSR Sp = 0.0223***

Markers:

- BCI
- Yasuní
- Paracouda
- Ituberá
- São Tomé
- Mbikiliki
- Nkong Mekak

Continents:

- America
- Africa
Similarities in groups of populations

America
- **Topography:**
 altitudinal sampling range = 25-72 m
- **Communities of dispersers:**

<table>
<thead>
<tr>
<th>Visitors</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>hummingbirds</td>
<td>pollinator</td>
</tr>
<tr>
<td>perching birds</td>
<td>pollinator</td>
</tr>
<tr>
<td>lepidoptera</td>
<td>pollinator</td>
</tr>
<tr>
<td>bees</td>
<td>pollinator</td>
</tr>
<tr>
<td>scatter-hoarding rodents</td>
<td>Seed disp.</td>
</tr>
<tr>
<td>nocturnal arboreal mammals</td>
<td>Seed disp.</td>
</tr>
<tr>
<td>monkeys</td>
<td>Seed disp.</td>
</tr>
<tr>
<td>tapirs</td>
<td>Seed disp.</td>
</tr>
<tr>
<td>bats</td>
<td>Seed disp.</td>
</tr>
</tbody>
</table>

Africa
- **Topography:**
 altitudinal sampling range = 365-1225 m
 complex relief
- **Communities of dispersers:**

<table>
<thead>
<tr>
<th>Visitors</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunbirds</td>
<td>pollinator</td>
</tr>
<tr>
<td>monkeys</td>
<td>Seed d.</td>
</tr>
<tr>
<td>ruminants</td>
<td>Seed d.</td>
</tr>
<tr>
<td>hornbills</td>
<td>Seed d.</td>
</tr>
</tbody>
</table>

A wider-ranging seed dispersal in America:
flat topography & long-range dispersers (bats, tapirs)
Bayesian clustering analysis

Mbikiliki

Nkong Mekak

Cytonuclear disequilibrium

GP + *H*

GP + *H*

secondary contact

STRUCTURE:

%-pure ind (q>87%) when K>1:

- >50% in Africa
- <8% in America

$F_{ST}(q\geq0.5)$ among GP:

- America <0.08
- Africa >0.08
Distribution of ancestry coefficients suggests continuous admixture.

Absence of gene pools.

No cytonuclear disequilibrium.
The wide-range genetic structure between continents

<table>
<thead>
<tr>
<th>Country</th>
<th>Population</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cameroon</td>
<td>Mbikiliki</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Nkong Mekak</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Korup</td>
<td>20</td>
</tr>
<tr>
<td>Benin</td>
<td>Porto Novo</td>
<td>20</td>
</tr>
<tr>
<td>Gabon</td>
<td>Ngounié</td>
<td>20</td>
</tr>
<tr>
<td>São Tomé Island</td>
<td>Ngounié</td>
<td>42</td>
</tr>
<tr>
<td>Brazil</td>
<td>Ituberá</td>
<td>65</td>
</tr>
<tr>
<td>French Guiana</td>
<td>Paracou</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Regina</td>
<td>20</td>
</tr>
</tbody>
</table>

- **Genotype probabilities:**
 - Number of reads
 - Presence of both alleles

- **Two morphotypes**

- **Genotyping by sequencing**
 - Protocol in Parchman et al. (2012)
 - The “ novo assembly “
 - Assembly with the reference (5-base mismatch)
 - 1 SNP per contig

- **4921 SNPs in 367 individuals**
 - huge divergence among gene pools

- **Colonization history?**
ENTROPY plots: similar to STRUCTURE

Benin & Sao Tomé:
GP influence from both continents

Dispersal between continents?

Mbikiliki & Nkong Mekak
(Cameroon, 48 km dist): the same GP

Gabon: admixture of GPs

French Guiana:
Genetic differentiation between morphotypes

- Paracou _S. globulifera_
- Regina _S. globulifera_
- Alternative morphotype
Genetic distance increases with geographic distance

Neighbour-joining tree: genetic distance of Neis’s D
American lineages → more recent

The alternative morphotype (French Guiana) Ituberá → more related

Treemix: Tree representing drift among populations from a root based on population allele frequencies

SNAPP: Species tree based on SNPs 3 ind. / population

Coalescence model
Detection of loci under selection:

Preliminary results:
- Bayescan → 277 loci
- Bayescenv → 164 loci (161 already in Bayescan)

Next: LFMM software

Environmental variables
- 19 Climate variables + lat/long/alt (4 PC): Worldclim data
- 15 Soil variables (4 PC): FAO data
- Climate+soil variables (5 PC)

Significant loci: q-value <0.05

![Graph showing the distribution of significant loci across different environmental variables.](image-url)
Conclusions

SGS at fine scale:
wide diversity of SGS patterns within *S. globulifera* populations

NO generalization of genetic structure patterns at fine scales from a limited number of populations in widespread species

SGS at wide scale:
deep insight into the macroevolutionary process promoting the current wide distribution of *S. globulifera*
Thank you!

• Collaborators who helped with sampling
• Plan Nacional I+D+i, Spain
• FPU grant from Spanish government
• EVOLTREE travel grant for the conference
• YOU for your attention

Paloma Torroba-Balmori
paloma.torroba@gmail.com